Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cardiovasc Res ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2256625

ABSTRACT

AIMS: SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. TRANSLATIONAL PERSPECTIVE: While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature's undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF - yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.

3.
Res Pract Thromb Haemost ; 6(7): e12826, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2148464

ABSTRACT

Background: Thromboinflammation plays a central role in severe COVID-19. The kallikrein pathway activates both inflammatory pathways and contact-mediated coagulation. We investigated if modulation of the thromboinflammatory response improves outcomes in hospitalized COVID-19 patients. Methods: In this multicenter open-label randomized clinical trial (EudraCT 2020-001739-28), patients hospitalized with COVID-19 were 1:2 randomized to receive standard of care (SOC) or SOC plus study intervention. The intervention consisted of aprotinin (2,000,000 IE IV four times daily) combined with low molecular weight heparin (LMWH; SC 50 IU/kg twice daily on the ward, 75 IU/kg twice daily in intensive care). Additionally, patients with predefined hyperinflammation received the interleukin-1 receptor antagonist anakinra (100 mg IV four times daily). The primary outcome was time to a sustained 2-point improvement on the 7-point World Health Organization ordinal scale for clinical status, or discharge. Findings: Between 24 June 2020 and 1 February 2021, 105 patients were randomized, and 102 patients were included in the full analysis set (intervention N = 67 vs. SOC N = 35). Twenty-five patients from the intervention group (37%) received anakinra. The intervention did not affect the primary outcome (HR 0.77 [CI 0.50-1.19], p = 0.24) or mortality (intervention n = 3 [4.6%] vs. SOC n = 2 [5.7%], HR 0.82 [CI 0.14-4.94], p = 0.83). There was one treatment-related adverse event in the intervention group (hematuria, 1.49%). There was one thrombotic event in the intervention group (1.49%) and one in the SOC group (2.86%), but no major bleeding. Conclusions: In hospitalized COVID-19 patients, modulation of thromboinflammation with high-dose aprotinin and LMWH with or without anakinra did not improve outcome in patients with moderate to severe COVID-19.

4.
Front Cardiovasc Med ; 9: 964512, 2022.
Article in English | MEDLINE | ID: covidwho-2099115

ABSTRACT

Recovered COVID-19 patients often display cardiac dysfunction, even after a mild infection. Most current histological results come from patients that are hospitalized and therefore represent more severe outcomes than most COVID-19 patients face. To overcome this limitation, we investigated the cardiac effects of SARS-CoV-2 infection in a hamster model. SARS-CoV-2 infected hamsters developed diastolic dysfunction after recovering from COVID-19. Histologically, increased cardiomyocyte size was present at the peak of viral load and remained at all time points investigated. As this increase is too rapid for hypertrophic remodeling, we found instead that the heart was oedemic. Moreover, cardiomyocyte swelling is associated with the presence of ischemia. Fibrin-rich microthrombi and pericyte loss were observed at the peak of viral load, resulting in increased HIF1α in cardiomyocytes. Surprisingly, SARS-CoV-2 infection inhibited the translocation of HIF1α to the nucleus both in hamster hearts, in cultured cardiomyocytes, as well as in an epithelial cell line. We propose that the observed diastolic dysfunction is the consequence of cardiac oedema, downstream of microvascular cardiac ischemia. Additionally, our data suggest that inhibition of HIF1α translocation could contribute to an exaggerated response upon SARS-CoV-2 infection.

5.
EBioMedicine ; 83: 104195, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035960

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a critical component of the kallikrein-kinin system. Its dysregulation may lead to increased vascular permeability and release of inflammatory chemokines. Interactions between the kallikrein-kinin and the coagulation system might further contribute to thromboembolic complications in COVID-19. METHODS: In this observational study, we measured plasma and tissue kallikrein hydrolytic activity, levels of kinin peptides, and myeloperoxidase (MPO)-DNA complexes as a biomarker for neutrophil extracellular traps (NETs), in bronchoalveolar lavage (BAL) fluid from patients with and without COVID-19. FINDINGS: In BAL fluid from patients with severe COVID-19 (n = 21, of which 19 were mechanically ventilated), we observed higher tissue kallikrein activity (18·2 pM [1·2-1535·0], median [range], n = 9 vs 3·8 [0·0-22·0], n = 11; p = 0·030), higher levels of the kinin peptide bradykinin-(1-5) (89·6 [0·0-2425·0], n = 21 vs 0·0 [0·0-374·0], n = 19, p = 0·001), and higher levels of MPO-DNA complexes (699·0 ng/mL [66·0-142621·0], n = 21 vs 70·5 [9·9-960·0], n = 19, p < 0·001) compared to patients without COVID-19. INTERPRETATION: Our observations support the hypothesis that dysregulation of the kallikrein-kinin system might occur in mechanically ventilated patients with severe pulmonary disease, which might help to explain the clinical presentation of patients with severe COVID-19 developing pulmonary oedema and thromboembolic complications. Therefore, targeting the kallikrein-kinin system should be further explored as a potential treatment option for patients with severe COVID-19. FUNDING: Research Foundation-Flanders (G0G4720N, 1843418N), KU Leuven COVID research fund.


Subject(s)
COVID-19 , Kallikrein-Kinin System , Angiotensin-Converting Enzyme 2 , Bradykinin , Bronchoalveolar Lavage Fluid , Humans , Kallikreins/metabolism , Peroxidase/metabolism , SARS-CoV-2 , Tissue Kallikreins/metabolism
6.
Trop Med Int Health ; 27(4): 418-425, 2022 04.
Article in English | MEDLINE | ID: covidwho-1769789

ABSTRACT

OBJECTIVE: We assessed healthcare workers (HCWs) COVID-19 vaccine acceptability in Ethiopia. METHODS: We carried out a cross-sectional survey from February to April 2021 in HCWs from five teaching hospitals. HCWs were selected using convenient sampling, and data were collected through a survey link. Descriptive analysis and mixed-effect logistic regression were performed. A total of 1,314 HCWs participated in the study. RESULTS: We found that 25.5% (n = 332) of the HCWs would not accept a COVID-19 vaccine and 20.2% (n = 264) were not willing to recommend COVID-19 vaccination to others. Factors associated with vaccine non-acceptance were female sex (AOR = 1.8; 95% CI: 1.3-2.5), the perception that vaccines are unsafe (AOR = 15.0; 95% CI: 8.7-25.9), not considering COVID-19 as health risk (AOR = 4.4; 95% CI: 2.0-9.5) and being unconcerned about contracting COVID-19 at work (AOR = 3.5; 95% CI: 1.5-8.4). Physicians were more willing to accept vaccination than other HCWs. Higher vaccine acceptability was also noted with increasing age. Participants most often indicated safety concerns as the determining factor on their decision to get vaccinated or not. CONCLUSION: Overall, a quarter of HCWs would not accept a COVID-19 vaccine. Communications and training should address vaccine safety concerns. Additionally, emphasis should be given to showing current and future impact of COVID-19 on the personal, public and country level unless control efforts are improved. Interventions aimed to increase vaccine uptake should focus their efforts on younger and non-physician HCWs.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Cross-Sectional Studies , Ethiopia , Female , Health Personnel , Humans , SARS-CoV-2 , Vaccination
7.
Mol Ther Methods Clin Dev ; 25: 215-224, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1740074

ABSTRACT

New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.

8.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1724402

ABSTRACT

BACKGROUND AND OBJECTIVES: Azithromycin was rapidly adopted as a repurposed drug to treat coronavirus disease 2019 (COVID-19) early in the pandemic. We aimed to evaluate its efficacy in patients hospitalised for COVID-19. METHODS: In a series of randomised, open-label, phase 2 proof-of-concept, multicentre clinical trials (Direct Antivirals Working against the novel coronavirus (DAWn)), several treatments were compared with standard of care. In 15 Belgian hospitals, patients hospitalised with moderate to severe COVID-19 were allocated 2:1 to receive standard of care plus azithromycin or standard of care alone. The primary outcome was time to live discharge or sustained clinical improvement, defined as a two-point improvement on the World Health Organization (WHO) ordinal scale sustained for at least 3 days. RESULTS: Patients were included between April 22 and December 17, 2020. When 15-day follow-up data were available for 160 patients (56% of preset cohort), an interim analysis was performed at request of the independent Data Safety and Monitoring Board. Subsequently, DAWn-AZITHRO was stopped for futility. In total, 121 patients were allocated to the treatment arm and 64 patients to the standard-of-care arm. We found no effect of azithromycin on the primary outcome with a hazard ratio of 1.044 (95% CI 0.772-1.413; p=0.7798). None of the predefined subgroups showed significant interaction as covariates in the Fine-Gray regression analysis. No benefit of azithromycin was found on any of the short- and longer-term secondary outcomes. CONCLUSION: Time to clinical improvement is not influenced by azithromycin in patients hospitalised with moderate to severe COVID-19.

9.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-1661114

ABSTRACT

Background and objectives Azithromycin was rapidly adopted as a repurposed drug to treat COVID-19 early in the pandemic. We aimed to evaluate its efficacy in patients hospitalised for COVID-19. Methods In a series of randomised, open-label, phase 2 proof-of-concept, multicenter clinical trials (Direct Antivirals Working against the novel Coronavirus [DAWn]), several treatments were compared with standard of care. In 15 Belgian hospitals, patients hospitalised with moderate to severe COVID-19 patients were allocated 2:1 to receive standard of care plus azithromycin or standard of care alone. The primary outcome was time to live discharge or sustained clinical improvement, defined as a two-point improvement on the WHO ordinal scale sustained for at least 3 days. Results Patients were included between April 22 and December 17, 2020. When 15-day follow-up data were available for 160 patients (56% of preset cohort), an interim analysis was performed at request of the independent Data Safety and Monitoring Board. Subsequently, DAWn-AZITHRO was stopped for futility. In total, 121 patients were allocated to the treatment arm and 64 patients to the standard of care arm. We found no effect of azithromycin on the primary outcome with Hazard ratio of 1.044 (95% confidence interval, 0.772–1.413;p=0.7798). None of the predefined subgroups showed significant interaction as covariates in the Fine-Gray regression analysis. No benefit of azithromycin was found on any of the short- and longer-term secondary outcomes. Conclusion Time to clinical improvement is not influenced by azithromycin in patients hospitalised with moderate to severe COVID-19.

10.
Am J Trop Med Hyg ; 105(6): 1519-1520, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1497591

ABSTRACT

In this study, we described the proportion of COVID-19 patients started on antibiotics empirically and the work-ups performed to diagnose bacterial superinfection. We used a retrospective cohort study design involving medical records of symptomatic, hospitalized COVID-19 patients who were admitted to these centers. A total of 481 patients were included, with a median age of 41.0 years (interquartile range, 28-58.5 years). A total of 72.1% (N = 347) of COVID-19 patients received antibiotics, either before or during admission. This is troublesome because none of the patients' bacterial culture or inflammatory markers, such as the erythrocyte sedimentation rate or C-reactive protein, were evaluated, and only 73 (15.2%) underwent radiological investigations. Therefore, national COVID-19 guidelines should emphasize the rational use of antibiotics for the treatment of COVID-19, a primarily viral disease. Integrating antimicrobial stewardship into the COVID-19 response and expanding microbiological capacities in low-income countries are indispensable. Otherwise, we risk one pandemic aggravating another.


Subject(s)
Anti-Bacterial Agents/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2 , Adult , Antimicrobial Stewardship , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Cohort Studies , Ethiopia/epidemiology , Female , Humans , Male , Middle Aged , Practice Guidelines as Topic , Retrospective Studies , Superinfection/diagnosis , Superinfection/drug therapy
11.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1450584

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
12.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1376571

ABSTRACT

BACKGROUND: Several randomised clinical trials have studied convalescent plasma for coronavirus disease 2019 (COVID-19) using different protocols, with different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibody titres, at different time-points and severities of illness. METHODS: In the prospective multicentre DAWn-plasma trial, adult patients hospitalised with COVID-19 were randomised to 4 units of open-label convalescent plasma combined with standard of care (intervention group) or standard of care alone (control group). Plasma from donors with neutralising antibody titres (50% neutralisation titre (NT50)) ≥1/320 was the product of choice for the study. RESULTS: Between 2 May 2020 and 26 January 2021, 320 patients were randomised to convalescent plasma and 163 patients to the control group according to a 2:1 allocation scheme. A median (interquartile range) volume of 884 (806-906) mL) convalescent plasma was administered and 80.68% of the units came from donors with neutralising antibody titres (NT50) ≥1/320. Median time from onset of symptoms to randomisation was 7 days. The proportion of patients alive and free of mechanical ventilation on day 15 was not different between both groups (convalescent plasma 83.74% (n=267) versus control 84.05% (n=137)) (OR 0.99, 95% CI 0.59-1.66; p=0.9772). The intervention did not change the natural course of antibody titres. The number of serious or severe adverse events was similar in both study arms and transfusion-related side-effects were reported in 19 out of 320 patients in the intervention group (5.94%). CONCLUSIONS: Transfusion of 4 units of convalescent plasma with high neutralising antibody titres early in hospitalised COVID-19 patients did not result in a significant improvement of clinical status or reduced mortality.


Subject(s)
Antibodies, Viral/blood , COVID-19 , Immunization, Passive , Adult , Antibodies, Neutralizing/blood , COVID-19/therapy , Hospitalization , Humans , Prospective Studies , Treatment Outcome , COVID-19 Serotherapy
14.
Semin Thromb Hemost ; 47(4): 362-371, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1203471

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) is a frequent complication of COVID-19, so that the importance of adequate in-hospital thromboprophylaxis in patients hospitalized with COVID-19 is well established. However, the incidence of VTE after discharge and whether postdischarge thromboprophylaxis is beneficial and safe are unclear. In this prospective observational single-center study, we report the incidence of VTE 6 weeks after hospitalization and the use of postdischarge thromboprophylaxis. METHODS: Patients hospitalized with confirmed COVID-19 were invited to a multidisciplinary follow-up clinic 6 weeks after discharge. D-dimer and C-reactive protein were measured, and all patients were screened for deep vein thrombosis with venous duplex-ultrasound. Additionally, selected high-risk patients received computed tomography pulmonary angiogram or ventilation-perfusion (V/Q) scan to screen for incidental pulmonary embolism. RESULTS: Of 485 consecutive patients hospitalized from March through June 2020, 146 patients were analyzed, of which 39% had been admitted to the intensive care unit (ICU). Postdischarge thromboprophylaxis was prescribed in 28% of patients, but was used more frequently after ICU stay (61%) and in patients with higher maximal D-dimer and C-reactive protein levels during hospitalization. Six weeks after discharge, elevated D-dimer values were present in 32% of ward and 42% of ICU patients. Only one asymptomatic deep vein thrombosis (0.7%) and one symptomatic pulmonary embolism (0.7%) were diagnosed with systematic screening. No bleedings were reported. CONCLUSION: In patients who had been hospitalized with COVID-19, systematic screening for VTE 6 weeks after discharge revealed a low incidence of VTE. A strategy of selectively providing postdischarge thromboprophylaxis in high-risk patients seems safe and potentially effective.


Subject(s)
C-Reactive Protein/metabolism , COVID-19 , Fibrin Fibrinogen Degradation Products/metabolism , Patient Discharge , SARS-CoV-2/metabolism , Venous Thromboembolism , COVID-19/blood , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Pulmonary Embolism/blood , Pulmonary Embolism/etiology , Pulmonary Embolism/mortality , Pulmonary Embolism/prevention & control , Venous Thromboembolism/blood , Venous Thromboembolism/etiology , Venous Thromboembolism/mortality , Venous Thromboembolism/prevention & control , Venous Thrombosis/blood , Venous Thrombosis/etiology , Venous Thrombosis/mortality , Venous Thrombosis/prevention & control
16.
EBioMedicine ; 66: 103288, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1141720

ABSTRACT

BACKGROUND: The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS: Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING: KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Itraconazole/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/transmission , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacokinetics , Itraconazole/therapeutic use , Male , Mesocricetus , Middle Aged , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , SARS-CoV-2/drug effects , Treatment Outcome , Vero Cells
17.
Trials ; 22(1): 126, 2021 Feb 09.
Article in English | MEDLINE | ID: covidwho-1076154

ABSTRACT

BACKGROUND: The rapid emergence and the high disease burden of the novel coronavirus SARS-CoV-2 have created a medical need for readily available drugs that can decrease viral replication or blunt the hyperinflammatory state leading to severe COVID-19 disease. Azithromycin is a macrolide antibiotic, known for its immunomodulatory properties. It has shown antiviral effect specifically against SARS-CoV-2 in vitro and acts on cytokine signaling pathways that have been implicated in COVID-19. METHODS: DAWn-AZITHRO is a randomized, open-label, phase 2 proof-of-concept, multicenter clinical trial, evaluating the safety and efficacy of azithromycin for treating hospitalized patients with COVID-19. It is part of a series of trials testing promising interventions for COVID-19, running in parallel and grouped under the name DAWn-studies. Patients hospitalized on dedicated COVID wards are eligible for study inclusion when they are symptomatic (i.e., clinical or radiological signs) and have been diagnosed with COVID-19 within the last 72 h through PCR (nasopharyngeal swab or bronchoalveolar lavage) or chest CT scan showing typical features of COVID-19 and without alternate diagnosis. Patients are block-randomized (9 patients) with a 2:1 allocation to receive azithromycin plus standard of care versus standard of care alone. Standard of care is mostly supportive, but may comprise hydroxychloroquine, up to the treating physician's discretion and depending on local policy and national health regulations. The treatment group receives azithromycin qd 500 mg during the first 5 consecutive days after inclusion. The trial will include 284 patients and recruits from 15 centers across Belgium. The primary outcome is time from admission (day 0) to life discharge or to sustained clinical improvement, defined as an improvement of two points on the WHO 7-category ordinal scale sustained for at least 3 days. DISCUSSION: The trial investigates the urgent and still unmet global need for drugs that may impact the disease course of COVID-19. It will either provide support or else justify the discouragement of the current widespread, uncontrolled use of azithromycin in patients with COVID-19. The analogous design of other parallel trials of the DAWN consortium will amplify the chance of identifying successful treatment strategies and allow comparison of treatment effects within an identical clinical context. TRIAL REGISTRATION: EU Clinical trials register EudraCT Nb 2020-001614-38 . Registered on 22 April 2020.


Subject(s)
Antiviral Agents/adverse effects , Azithromycin/adverse effects , COVID-19 Drug Treatment , SARS-CoV-2/genetics , Standard of Care , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Azithromycin/administration & dosage , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Hydroxychloroquine/therapeutic use , Length of Stay , Male , Middle Aged , Multicenter Studies as Topic , Polymerase Chain Reaction , Proof of Concept Study , Randomized Controlled Trials as Topic , Treatment Outcome , Young Adult
19.
Nature ; 590(7845): 320-325, 2021 02.
Article in English | MEDLINE | ID: covidwho-953381

ABSTRACT

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/genetics , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Glycosylation , Macaca fascicularis/genetics , Macaca fascicularis/immunology , Macaca fascicularis/virology , Male , Mesocricetus/genetics , Mesocricetus/immunology , Mesocricetus/virology , Mice , Safety , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
20.
Trials ; 21(1): 981, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-947944

ABSTRACT

BACKGROUND: The COVID-19 pandemic has imposed an enormous burden on health care systems around the world. In the past, the administration of convalescent plasma of patients having recovered from SARS and severe influenza to patients actively having the disease showed promising effects on mortality and appeared safe. Whether or not this also holds true for the novel SARS-CoV-2 virus is currently unknown. METHODS: DAWn-Plasma is a multicentre nation-wide, randomized, open-label, phase II proof-of-concept clinical trial, evaluating the clinical efficacy and safety of the addition of convalescent plasma to the standard of care in patients hospitalized with COVID-19 in Belgium. Patients hospitalized with a confirmed diagnosis of COVID-19 are eligible when they are symptomatic (i.e. clinical or radiological signs) and have been diagnosed with COVID-19 in the 72 h before study inclusion through a PCR (nasal/nasopharyngeal swab or bronchoalveolar lavage) or a chest-CT scan showing features compatible with COVID-19 in the absence of an alternative diagnosis. Patients are randomized in a 2:1 ratio to either standard of care and convalescent plasma (active treatment group) or standard of care only. The active treatment group receives 2 units of 200 to 250 mL of convalescent plasma within 12 h after randomization, with a second administration of 2 units 24 to 36 h after ending the first administration. The trial aims to include 483 patients and will recruit from 25 centres across Belgium. The primary endpoint is the proportion of patients that require mechanical ventilation or have died at day 15. The main secondary endpoints are clinical status on day 15 and day 30 after randomization, as defined by the WHO Progression 10-point ordinal scale, and safety of the administration of convalescent plasma. DISCUSSION: This trial will either provide support or discourage the use of convalescent plasma as an early intervention for the treatment of hospitalized patients with COVID-19 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT04429854 . Registered on 12 June 2020 - Retrospectively registered.


Subject(s)
Antibodies, Viral/immunology , COVID-19/therapy , SARS-CoV-2/genetics , Adult , Antibodies, Viral/blood , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Combined Modality Therapy/methods , Female , Global Burden of Disease , Hospitalization/trends , Humans , Immunization, Passive/methods , Male , Mortality , Respiration, Artificial/statistics & numerical data , SARS-CoV-2/immunology , Safety , Standard of Care/statistics & numerical data , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL